INDIAN SCHOOL MUSCAT

DEPARTMENT OF MATHEMATICS

3D GEOMETRY

CLASS-12

1) Find the values of p so that the line

$$
\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5} \text { are right angles } .
$$

2) Find the Shortest Distance Between Two Lines

$$
\vec{r}=\hat{\imath}+\hat{\jmath}+\hat{\lambda}(2 \hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \vec{r}=2 \hat{\imath}+\hat{\jmath}-\hat{k}+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k})
$$

3) Find the foot of the perpendicular from the $(1,2,3)$ on the line $\vec{r}=6 \hat{\imath}+7 \hat{\jmath}+7 \hat{k}+\lambda(3 \hat{\imath}+$ $2 \hat{\jmath}-2 \hat{k}$. Also find the image of the point on the line
4) Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and x $+y+z-2=0$ and passing through the point $(2,2,1$,
5) Find the angle between the planes whose vector equations are

$$
\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})=6: \vec{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})=-5
$$

6) Find the angle between the line $\frac{x+2}{3}=\frac{2-y}{2}=\frac{z+3}{2}$ and the plane $2 x+3 y-z=5$
7) Find the distance of a point $(3,-2,1)$ from the plane $2 x-y+2 z+3=0$
8) Find the length and the foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x$ $+4 y-z=2$, also find image point.
9) Find the equation of the plane that contains the point $(-1,3,2)$ and perpendicular to each of the plane $x+2 y-3 z=5$ and $3 x+3 y-z=0$.
10) Show that the lines $\vec{r}=\hat{\imath}+\hat{\jmath}-\hat{k}+\lambda(3 \hat{\imath}-\hat{\jmath})$ and $\vec{r}=4 \hat{\imath}-3 \hat{k}+\mu(2 \hat{\imath}+3 \hat{k})$ are coplanar. Also find the equation of the plane containing them.
11) Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the $2 x+y+z$ Plane.
12) Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-1}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing them.
13) Prove that if a plane as the intercepts a, b, c and is at a distance of p units from the origin ,then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$
14) Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$, measured along a line parallel to $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$
15) Find the distance of the point $(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{-2}$ measured parallel to the plane $4 x+12 y-3 z+1=0$
16) Find the shortest distance between the pairs of lines given by

$$
\vec{r}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k}) \text { and } \vec{r}=2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}+\mu(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})
$$

